Biblio
Third-party software daemons called host agents are increasingly responsible for a modern host's security, automation, and monitoring tasks. Because of their location within the host, these agents are at risk of manipulation by malware and users. Additionally, in virtualized environments where multiple adjacent guests each run their own set of agents, the cumulative resources that agents consume adds up rapidly. Consolidating agents onto the hypervisor can address these problems, but places a technical burden on agent developers. This work presents a development methodology to re-engineer a host agent in to a hyperagent, an out-of-guest agent that gains unique hypervisor-based advantages while retaining its original in-guest capabilities. This three-phase methodology makes integrating Virtual Machine Introspection (VMI) functionality in to existing code easier and more accessible, minimizing an agent developer's re-engineering effort. The benefits of hyperagents are illustrated by porting the GRR live forensics agent, which retains 89% of its codebase, uses 40% less memory than its in-guest counterparts, and enables a 4.9x speedup for a representative data-intensive workload. This work shows that a conventional off-the-shelf host agent can be feasibly transformed into a hyperagent and provide a powerful, efficient tool for defending virtualized systems.
Virtual Routers (VRs) are increasingly common in cloud environments. VRs route traffic between network segments and support network services. Routers, including VRs, have been the target of several recent high-profile attacks, emphasizing the need for more security measures, including security monitoring. However, existing agent-based monitoring systems are incompatible with a VR's temporary nature, stripped-down operating system, and placement in the cloud. As a result, VRs are often not monitored, leading to undetected security incidents. This paper proposes a new security monitoring design that leverages virtualization instead of in-guest agents. Its hypervisor-based system, Arav, scrutinizes VRs by novel application of Virtual Machine Introspection (VMI) breakpoint injection. Arav monitored and addressed security-related events in two common VRs, pfSense and VyOS, and detected four attacks against two popular VR services, Quagga and OpenVPN. Arav's performance overhead is negligible, less than 0.63%, demonstrating VMI's utility in monitoring virtual machines unsuitable for traditional security monitoring.