Visible to the public Biblio

Filters: Author is Yu, Lei  [Clear All Filters]
2023-04-28
Zhu, Yuwen, Yu, Lei.  2022.  A Modeling Method of Cyberspace Security Structure Based on Layer-Level Division. 2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET). :247–251.
As the cyberspace structure becomes more and more complex, the problems of dynamic network space topology, complex composition structure, large spanning space scale, and a high degree of self-organization are becoming more and more important. In this paper, we model the cyberspace elements and their dependencies by combining the knowledge of graph theory. Layer adopts a network space modeling method combining virtual and real, and level adopts a spatial iteration method. Combining the layer-level models into one, this paper proposes a fast modeling method for cyberspace security structure model with network connection relationship, hierarchical relationship, and vulnerability information as input. This method can not only clearly express the individual vulnerability constraints in the network space, but also clearly express the hierarchical relationship of the complex dependencies of network individuals. For independent network elements or independent network element groups, it has flexibility and can greatly reduce the computational complexity in later applications.
2019-03-06
Gursoy, Mehmet Emre, Liu, Ling, Truex, Stacey, Yu, Lei, Wei, Wenqi.  2018.  Utility-Aware Synthesis of Differentially Private and Attack-Resilient Location Traces. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :196-211.
As mobile devices and location-based services become increasingly ubiquitous, the privacy of mobile users' location traces continues to be a major concern. Traditional privacy solutions rely on perturbing each position in a user's trace and replacing it with a fake location. However, recent studies have shown that such point-based perturbation of locations is susceptible to inference attacks and suffers from serious utility losses, because it disregards the moving trajectory and continuity in full location traces. In this paper, we argue that privacy-preserving synthesis of complete location traces can be an effective solution to this problem. We present AdaTrace, a scalable location trace synthesizer with three novel features: provable statistical privacy, deterministic attack resilience, and strong utility preservation. AdaTrace builds a generative model from a given set of real traces through a four-phase synthesis process consisting of feature extraction, synopsis learning, privacy and utility preserving noise injection, and generation of differentially private synthetic location traces. The output traces crafted by AdaTrace preserve utility-critical information existing in real traces, and are robust against known location trace attacks. We validate the effectiveness of AdaTrace by comparing it with three state of the art approaches (ngram, DPT, and SGLT) using real location trace datasets (Geolife and Taxi) as well as a simulated dataset of 50,000 vehicles in Oldenburg, Germany. AdaTrace offers up to 3-fold improvement in trajectory utility, and is orders of magnitude faster than previous work, while preserving differential privacy and attack resilience.
2018-05-16
Khasawneh, Khaled N., Abu-Ghazaleh, Nael, Ponomarev, Dmitry, Yu, Lei.  2017.  RHMD: Evasion-resilient Hardware Malware Detectors. Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. :315–327.

Hardware Malware Detectors (HMDs) have recently been proposed as a defense against the proliferation of malware. These detectors use low-level features, that can be collected by the hardware performance monitoring units on modern CPUs to detect malware as a computational anomaly. Several aspects of the detector construction have been explored, leading to detectors with high accuracy. In this paper, we explore the question of how well evasive malware can avoid detection by HMDs. We show that existing HMDs can be effectively reverse-engineered and subsequently evaded, allowing malware to hide from detection without substantially slowing it down (which is important for certain types of malware). This result demonstrates that the current generation of HMDs can be easily defeated by evasive malware. Next, we explore how well a detector can evolve if it is exposed to this evasive malware during training. We show that simple detectors, such as logistic regression, cannot detect the evasive malware even with retraining. More sophisticated detectors can be retrained to detect evasive malware, but the retrained detectors can be reverse-engineered and evaded again. To address these limitations, we propose a new type of Resilient HMDs (RHMDs) that stochastically switch between different detectors. These detectors can be shown to be provably more difficult to reverse engineer based on resent results in probably approximately correct (PAC) learnability theory. We show that indeed such detectors are resilient to both reverse engineering and evasion, and that the resilience increases with the number and diversity of the individual detectors. Our results demonstrate that these HMDs offer effective defense against evasive malware at low additional complexity.