Visible to the public Biblio

Filters: Author is Mejri, M.  [Clear All Filters]
2021-04-27
Yermalovich, P., Mejri, M..  2020.  Information security risk assessment based on decomposition probability via Bayesian Network. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
Well-known approaches to risk analysis suggest considering the level of an information system risk as one frame in a film. This means that we only can perform a risk assessment for the current point in time. This article explores the idea of risk assessment in a future period, as a prediction of what we will see in the film later. In other words, the article presents an approach to predicting a potential future risk and suggests the idea of relying on forecasting the likelihood of an attack on information system assets. To establish the risk level at a selected time interval in the future, one has to perform a mathematical decomposition. To do this, we need to select the required information system parameters for the predictions and their statistical data for risk assessment. This method can be used to ensure more detailed budget planning when ensuring the protection of the information system. It can be also applied in case of a change of the information protection configuration to satisfy the accepted level of risk associated with projected threats and vulnerabilities.
2018-05-16
Fattahi, J., Mejri, M., Ziadia, M., Ghayoula, E., Samoud, O., Pricop, E..  2017.  Cryptographic protocol for multipart missions involving two independent and distributed decision levels in a military context. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1127–1132.

In several critical military missions, more than one decision level are involved. These decision levels are often independent and distributed, and sensitive pieces of information making up the military mission must be kept hidden from one level to another even if all of the decision levels cooperate to accomplish the same task. Usually, a mission is negotiated through insecure networks such as the Internet using cryptographic protocols. In such protocols, few security properties have to be ensured. However, designing a secure cryptographic protocol that ensures several properties at once is a very challenging task. In this paper, we propose a new secure protocol for multipart military missions that involve two independent and distributed decision levels having different security levels. We show that it ensures the secrecy, authentication, and non-repudiation properties. In addition, we show that it resists against man-in-the-middle attacks.