Visible to the public Biblio

Filters: Author is Li, Yang  [Clear All Filters]
2023-08-24
Sun, Jun, Li, Yang, Zhang, Ge, Dong, Liangyu, Yang, Zitao, Wang, Mufeng, Cai, Jiahe.  2022.  Data traceability scheme of industrial control system based on digital watermark. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :322–325.
The fourth industrial revolution has led to the rapid development of industrial control systems. While the large number of industrial system devices connected to the Internet provides convenience for production management, it also exposes industrial control systems to more attack surfaces. Under the influence of multiple attack surfaces, sensitive data leakage has a more serious and time-spanning negative impact on industrial production systems. How to quickly locate the source of information leakage plays a crucial role in reducing the loss from the attack, so there are new requirements for tracing sensitive data in industrial control information systems. In this paper, we propose a digital watermarking traceability scheme for sensitive data in industrial control systems to address the above problems. In this scheme, we enhance the granularity of traceability by classifying sensitive data types of industrial control systems into text, image and video data with differentiated processing, and achieve accurate positioning of data sources by combining technologies such as national secret asymmetric encryption and hash message authentication codes, and mitigate the impact of mainstream watermarking technologies such as obfuscation attacks and copy attacks on sensitive data. It also mitigates the attacks against the watermarking traceability such as obfuscation attacks and copy attacks. At the same time, this scheme designs a data flow watermark monitoring module on the post-node of the data source to monitor the unauthorized sensitive data access behavior caused by other attacks.
2022-03-15
Li, Yang, Bai, Liyun, Zhang, Mingqi, Wang, Siyuan, Wu, Jing, Jiang, Hao.  2021.  Network Protocol Reverse Parsing Based on Bit Stream. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83—90.
The network security problem brought by the cloud computing has become an important issue to be dealt with in information construction. Since anomaly detection and attack detection in cloud environment need to find the vulnerability through the reverse analysis of data flow, it is of great significance to carry out the reverse analysis of unknown network protocol in the security application of cloud environment. To solve this problem, an improved mining method on bitstream protocol association rules with unknown type and format is proposed. The method combines the location information of the protocol framework to make the frequent extraction process more concise and accurate. In addition, for the frame separation problem of unknown protocol, we design a hierarchical clustering algorithm based on Jaccard distance and a frame field delimitation method based on the proximity of information entropy between bytes. The experimental results show that this technology can correctly resolve the protocol format and realize the purpose of anomaly detection in cloud computing, and ensure the security of cloud services.
2021-09-30
Cao, Yaofu, Li, Xiaomeng, Zhang, Shulin, Li, Yang, Chen, Liang, He, Yunrui.  2020.  Design of network security situation awareness analysis module for electric power dispatching and control system. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :716–720.
The current network security situation of the electric power dispatching and control system is becoming more and more severe. On the basis of the original network security management platform, to increase the collection of network security data information and improve the network security analysis ability, this article proposes the electric power dispatching and control system network security situation awareness analysis module. The perception layer accesses multi-source heterogeneous data sources. Upwards through the top layer, data standardization will be introduced, who realizes data support for security situation analysis, and forms an association mapping with situation awareness elements such as health situation, attack situation, behavior situation, and operation situation. The overall effect is achieving the construction goals of "full control of equipment status, source of security attacks can be traced, operational risks are identifiable, and abnormal behaviors can be found.".
2020-10-06
Li, Zhiyi, Shahidehpour, Mohammad, Galvin, Robert W., Li, Yang.  2018.  Collaborative Cyber-Physical Restoration for Enhancing the Resilience of Power Distribution Systems. 2018 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.

2019-02-08
Fang, Yong, Li, Yang, Liu, Liang, Huang, Cheng.  2018.  DeepXSS: Cross Site Scripting Detection Based on Deep Learning. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :47-51.

Nowadays, Cross Site Scripting (XSS) is one of the major threats to Web applications. Since it's known to the public, XSS vulnerability has been in the TOP 10 Web application vulnerabilities based on surveys published by the Open Web Applications Security Project (OWASP). How to effectively detect and defend XSS attacks are still one of the most important security issues. In this paper, we present a novel approach to detect XSS attacks based on deep learning (called DeepXSS). First of all, we used word2vec to extract the feature of XSS payloads which captures word order information and map each payload to a feature vector. And then, we trained and tested the detection model using Long Short Term Memory (LSTM) recurrent neural networks. Experimental results show that the proposed XSS detection model based on deep learning achieves a precision rate of 99.5% and a recall rate of 97.9% in real dataset, which means that the novel approach can effectively identify XSS attacks.

2019-01-31
Wang, Jiabao, Miao, Zhuang, Zhang, Yanshuo, Li, Yang.  2018.  An Effective Framework for Person Re-Identification in Video Surveillance. Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing. :24–28.

Although the deep learning technology effectively improves the effect of person re-identification (re-ID) in video surveillance, there is still a lack of efficient framework in practical, especially in terms of computational cost, which usually requires GPU support. So this paper explores to solve the actual running performance and an effective person re-ID framework is proposed. A tiny network is designed for person detection and a triplet network is adopted for training feature extraction network. The motion detection and person detection is combined to speed up the whole process. The proposed framework is tested in practice and the results show that it can run in real-time on an ordinary PC machine. And the accuracy achieves 91.6% in actual data set. It has a good guidance for person re-ID in actual application.