Biblio
For wireless sensor networks deployed to monitor and report real events, event source-location privacy (SLP) is a critical security property. Previous work has proposed schemes based on fake packet injection such as FitProbRate and TFS, to realize event source anonymity for sensor networks under a challenging attack model where a global attacker is able to monitor the traffic in the entire network. Although these schemes can well protect the SLP, there exists imbalance in traffic or delay. In this paper, we propose an Optimal-cluster-based Source Anonymity Protocol (OSAP), which can achieve a tradeoff between network traffic and real event report latency through adjusting the transmission rate and the radius of unequal clusters, to reduce the network traffic. The simulation results demonstrate that OSAP can significantly reduce the network traffic and the delay meets the system requirement.