Visible to the public Biblio

Filters: Author is Santoso, B.  [Clear All Filters]
2019-02-14
Oohama, Y., Santoso, B..  2018.  Information Theoretical Analysis of Side-Channel Attacks to the Shannon Cipher System. 2018 IEEE International Symposium on Information Theory (ISIT). :581-585.
We study side-channel attacks for the Shannon cipher system. To pose side channel-attacks to the Shannon cipher system, we regard them as a signal estimation via encoded data from two distributed sensors. This can be formulated as the one helper source coding problem posed and investigated by Ahlswede, Korner(1975), and Wyner(1975). We further investigate the posed problem to derive new secrecy bounds. Our results are derived by a coupling of the result Watanabe and Oohama(2012) obtained on bounded storage eavesdropper with the exponential strong converse theorem Oohama(2015) established for the one helper source coding problem.
2018-05-30
Su, C., Santoso, B., Li, Y., Deng, R. H., Huang, X..  2017.  Universally Composable RFID Mutual Authentication. IEEE Transactions on Dependable and Secure Computing. 14:83–94.

Universally Composable (UC) framework provides the strongest security notion for designing fully trusted cryptographic protocols, and it is very challenging on applying UC security in the design of RFID mutual authentication protocols. In this paper, we formulate the necessary conditions for achieving UC secure RFID mutual authentication protocols which can be fully trusted in arbitrary environment, and indicate the inadequacy of some existing schemes under the UC framework. We define the ideal functionality for RFID mutual authentication and propose the first UC secure RFID mutual authentication protocol based on public key encryption and certain trusted third parties which can be modeled as functionalities. We prove the security of our protocol under the strongest adversary model assuming both the tags' and readers' corruptions. We also present two (public) key update protocols for the cases of multiple readers: one uses Message Authentication Code (MAC) and the other uses trusted certificates in Public Key Infrastructure (PKI). Furthermore, we address the relations between our UC framework and the zero-knowledge privacy model proposed by Deng et al. [1].