Visible to the public Biblio

Filters: Author is Xu, Xiaojun  [Clear All Filters]
2022-02-09
Xu, Xiaojun, Wang, Qi, Li, Huichen, Borisov, Nikita, Gunter, Carl A., Li, Bo.  2021.  Detecting AI Trojans Using Meta Neural Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :103–120.
In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.
2018-06-07
Xu, Xiaojun, Liu, Chang, Feng, Qian, Yin, Heng, Song, Le, Song, Dawn.  2017.  Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :363–376.

The problem of cross-platform binary code similarity detection aims at detecting whether two binary functions coming from different platforms are similar or not. It has many security applications, including plagiarism detection, malware detection, vulnerability search, etc. Existing approaches rely on approximate graph-matching algorithms, which are inevitably slow and sometimes inaccurate, and hard to adapt to a new task. To address these issues, in this work, we propose a novel neural network-based approach to compute the embedding, i.e., a numeric vector, based on the control flow graph of each binary function, then the similarity detection can be done efficiently by measuring the distance between the embeddings for two functions. We implement a prototype called Gemini. Our extensive evaluation shows that Gemini outperforms the state-of-the-art approaches by large margins with respect to similarity detection accuracy. Further, Gemini can speed up prior art's embedding generation time by 3 to 4 orders of magnitude and reduce the required training time from more than 1 week down to 30 minutes to 10 hours. Our real world case studies demonstrate that Gemini can identify significantly more vulnerable firmware images than the state-of-the-art, i.e., Genius. Our research showcases a successful application of deep learning on computer security problems.