Visible to the public Biblio

Filters: Author is Opoku-Mensah, E.  [Clear All Filters]
2018-06-07
Appiah, B., Opoku-Mensah, E., Qin, Z..  2017.  SQL injection attack detection using fingerprints and pattern matching technique. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). :583–587.

Web-Based applications are becoming more increasingly technically complex and sophisticated. The very nature of their feature-rich design and their capability to collate, process, and disseminate information over the Internet or from within an intranet makes them a popular target for attack. According to Open Web Application Security Project (OWASP) Top Ten Cheat sheet-2017, SQL Injection Attack is at peak among online attacks. This can be attributed primarily to lack of awareness on software security. Developing effective SQL injection detection approaches has been a challenge in spite of extensive research in this area. In this paper, we propose a signature based SQL injection attack detection framework by integrating fingerprinting method and Pattern Matching to distinguish genuine SQL queries from malicious queries. Our framework monitors SQL queries to the database and compares them against a dataset of signatures from known SQL injection attacks. If the fingerprint method cannot determine the legitimacy of query alone, then the Aho Corasick algorithm is invoked to ascertain whether attack signatures appear in the queries. The initial experimental results of our framework indicate the approach can identify wide variety of SQL injection attacks with negligible impact on performance.