Visible to the public Biblio

Filters: Author is Smaoui, S.  [Clear All Filters]
2018-05-09
Ameur, S. B., Smaoui, S., Zarai, F..  2017.  Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). :1314–1321.

NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.

2015-05-04
Ben Ameur, S., Zarai, F., Smaoui, S., Obaidat, M.S., Hsiao, K.F..  2014.  A lightweight mutual authentication mechanism for improving fast PMIPV6-based network mobility scheme. Network Infrastructure and Digital Content (IC-NIDC), 2014 4th IEEE International Conference on. :61-68.

In the last decade, the request for Internet access in heterogeneous environments keeps on growing, principally in mobile platforms such as buses, airplanes and trains. Consequently, several extensions and schemes have been introduced to achieve seamless handoff of mobile networks from one subnet to another. Even with these enhancements, the problem of maintaining the security concerns and availability has not been resolved yet, especially, the absence of authentication mechanism between network entities in order to avoid vulnerability from attacks. To eliminate the threats on the interface between the mobile access gateway (MAG) and the mobile router (MR) in improving fast PMIPv6-based network mobility (IFP-NEMO) protocol, we propose a lightweight mutual authentication mechanism in improving fast PMIPv6-based network mobility scheme (LMAIFPNEMO). This scheme uses authentication, authorization and accounting (AAA) servers to enhance the security of the protocol IFP-NEMO which allows the integration of improved fast proxy mobile IPv6 (PMIPv6) in network mobility (NEMO). We use only symmetric cryptographic, generated nonces and hash operation primitives to ensure a secure authentication procedure. Then, we analyze the security aspect of the proposed scheme and evaluate it using the automated validation of internet security protocols and applications (AVISPA) software which has proved that authentication goals are achieved.