Visible to the public Biblio

Filters: Author is Hossain, M. A.  [Clear All Filters]
2018-09-05
Hossain, M. A., Merrill, H. M., Bodson, M..  2017.  Evaluation of metrics of susceptibility to cascading blackouts. 2017 IEEE Power and Energy Conference at Illinois (PECI). :1–5.
In this paper, we evaluate the usefulness of metrics that assess susceptibility to cascading blackouts. The metrics are computed using a matrix of Line Outage Distribution Factors (LODF, or DFAX matrix). The metrics are compared for several base cases with different load levels of the Western Interconnection (WI). A case corresponding to the September 8, 2011 pre-blackout state is used to compute these metrics and relate them to the origin of the cascading blackout. The correlation between the proposed metrics is determined to check redundancy. The analysis is also used to find vulnerable and critical hot spots in the power system.
2018-06-20
Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.