Visible to the public Biblio

Filters: Author is Ayoob, Mustafa  [Clear All Filters]
2018-08-23
Ayoob, Mustafa, Adi, Wael, Prevelakis, Vassilis.  2017.  Using Ciphers for Failure-Recovery in ITS Systems. Proceedings of the 12th International Conference on Availability, Reliability and Security. :98:1–98:7.
Combining Error-Correction Coding ECC and cryptography was proposed in the recent decade making use of bit-quality parameters to improve the error correction capability. Most of such techniques combine authentication crypto-functions jointly with ECC codes to improve system reliability, while fewer proposals involve ciphering functions with ECC to improve reliability. In this work, we propose practical and pragmatic low-cost approaches for making use of existing ciphering functions for reliability improvement. The presented techniques show that ciphering functions (as deterministic, non-linear bijective functions) can serve to achieve error correction enhancement and hence allow error recovery and scalable security trade-offs with or without additional ECC components. We demonstrate two best-effort error-correcting strategies. It is further shown, that the targeted reliability improvement is scalable to attain practical usability. The first proposed technique is pure-cipher-based error correction procedure deploying hard decision, best-effort operations to improve the system-survivability without changing system configuration. The second strategy is making use of ECC in combination with the ciphering function to enhance system-survivability. The correction procedures are based on simple experimental search-and-modify the corrupted ciphertext until predefined criteria become valid. This procedure may, however, turn out to become equivalent to a successful integrity/authenticity attack that may reduce the system security level, however in a scalable and predictable non-significant fashion.