Visible to the public Biblio

Filters: Author is Russo, A.  [Clear All Filters]
2021-03-15
Cortiñas, C. T., Vassena, M., Russo, A..  2020.  Securing Asynchronous Exceptions. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :214–229.

Language-based information-flow control (IFC) techniques often rely on special purpose, ad-hoc primitives to address different covert channels that originate in the runtime system, beyond the scope of language constructs. Since these piecemeal solutions may not compose securely, there is a need for a unified mechanism to control covert channels. As a first step towards this goal, we argue for the design of a general interface that allows programs to safely interact with the runtime system and the available computing resources. To coordinate the communication between programs and the runtime system, we propose the use of asynchronous exceptions (interrupts), which, to the best of our knowledge, have not been considered before in the context of IFC languages. Since asynchronous exceptions can be raised at any point during execution-often due to the occurrence of an external event-threads must temporarily mask them out when manipulating locks and shared data structures to avoid deadlocks and, therefore, breaking program invariants. Crucially, the naive combination of asynchronous exceptions with existing features of IFC languages (e.g., concurrency and synchronization variables) may open up new possibilities of information leakage. In this paper, we present MACasync, a concurrent, statically enforced IFC language that, as a novelty, features asynchronous exceptions. We show how asynchronous exceptions easily enable (out of the box) useful programming patterns like speculative execution and some degree of resource management. We prove that programs in MACasync satisfy progress-sensitive non-interference and mechanize our formal claims in the Agda proof assistant.

2021-01-11
Lobo-Vesga, E., Russo, A., Gaboardi, M..  2020.  A Programming Framework for Differential Privacy with Accuracy Concentration Bounds. 2020 IEEE Symposium on Security and Privacy (SP). :411–428.
Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.
2018-08-23
Vassena, M., Breitner, J., Russo, A..  2017.  Securing Concurrent Lazy Programs Against Information Leakage. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :37–52.
Many state-of-the-art information-flow control (IFC) tools are implemented as Haskell libraries. A distinctive feature of this language is lazy evaluation. In his influencal paper on why functional programming matters, John Hughes proclaims:,,Lazy evaluation is perhaps the most powerful tool for modularization in the functional programmer's repertoire.,,Unfortunately, lazy evaluation makes IFC libraries vulnerable to leaks via the internal timing covert channel. The problem arises due to sharing, the distinguishing feature of lazy evaluation, which ensures that results of evaluated terms are stored for subsequent re-utilization. In this sense, the evaluation of a term in a high context represents a side-effect that eludes the security mechanisms of the libraries. A naïve approach to prevent that consists in forcing the evaluation of terms before entering a high context. However, this is not always possible in lazy languages, where terms often denote infinite data structures. Instead, we propose a new language primitive, lazyDup, which duplicates terms lazily. By using lazyDup to duplicate terms manipulated in high contexts, we make the security library MAC robust against internal timing leaks via lazy evaluation. We show that well-typed programs satisfy progress-sensitive non-interference in our lazy calculus with non-strict references. Our security guarantees are supported by mechanized proofs in the Agda proof assistant.