Visible to the public Biblio

Filters: Author is Alnemari, A.  [Clear All Filters]
2018-09-28
Alnemari, A., Romanowski, C. J., Raj, R. K..  2017.  An Adaptive Differential Privacy Algorithm for Range Queries over Healthcare Data. 2017 IEEE International Conference on Healthcare Informatics (ICHI). :397–402.

Differential privacy is an approach that preserves patient privacy while permitting researchers access to medical data. This paper presents mechanisms proposed to satisfy differential privacy while answering a given workload of range queries. Representing input data as a vector of counts, these methods partition the vector according to relationships between the data and the ranges of the given queries. After partitioning the vector into buckets, the counts of each bucket are estimated privately and split among the bucket's positions to answer the given query set. The performance of the proposed method was evaluated using different workloads over several attributes. The results show that partitioning the vector based on the data can produce more accurate answers, while partitioning the vector based on the given workload improves privacy. This paper's two main contributions are: (1) improving earlier work on partitioning mechanisms by building a greedy algorithm to partition the counts' vector efficiently, and (2) its adaptive algorithm considers the sensitivity of the given queries before providing results.