Visible to the public Biblio

Filters: Author is Arai, Hiromi  [Clear All Filters]
2018-09-28
Arai, Hiromi, Emura, Keita, Hayashi, Takuya.  2017.  A Framework of Privacy Preserving Anomaly Detection: Providing Traceability Without Big Brother. Proceedings of the 2017 on Workshop on Privacy in the Electronic Society. :111–122.

Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, some adversarial users may behave badly under circumstances where they are not identified. However, the privacy of honest users should not be infringed. Thus, detecting anomalies without revealing normal users-identities is quite important for operating information systems using personal data. Though various methods of statistics and machine learning have been developed for detecting anomalies, it is difficult to know in advance what anomaly will come up. Thus, it would be useful to provide a "general" framework that can employ any anomaly detection method regardless of the type of data and the nature of the abnormality. In this paper, we propose a privacy preserving anomaly detection framework that allows an authority to detect adversarial users while other honest users are kept anonymous. By using cryptographic techniques, group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and any anomaly detection method. It is particularly worth noting that no big brother exists, meaning that no single entity can identify users, while bad behaviors are always traceable. We also show the result of implementing our framework. Briefly, the overhead of our framework is on the order of dozens of milliseconds.