Biblio
Filters: Author is Badawy, Abdel-Hameed A. [Clear All Filters]
Securing Network-on-Chips via Novel Anonymous Routing. 2021 15th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :29–34.
.
2021. Network-on-Chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-Chips (SoCs). However, the shared communication resources in NoCs, e.g., channels, buffers, and routers might be used to conduct attacks compromising the security of NoC-based SoCs. Almost all of the proposed encryption-based protection methods in the literature need to leave some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This uncovers the source/destination information of the packet to malicious routers, which can be used in various attacks. In this paper, we propose the idea of secure anonymous routing with minimal hardware overhead to hide the source/destination information while exchanging secure information over the network. The proposed method uses a novel source-routing algorithm that works with encrypted destination addresses and prevents malicious routers from discovering the source/destination of secure packets. To support our proposal, we have designed and implemented a new NoC architecture that works with encrypted addresses. The conducted hardware evaluations show that the proposed security solution combats the security threats at an affordable cost of 1% area and 10% power overheads chip-wide.
Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
.
2019. Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
DyAdHyTM: A Low Overhead Dynamically Adaptive Hybrid Transactional Memory with Application to Large Graphs. Proceedings of the International Symposium on Memory Systems. :327–336.
.
2017. Big data is a buzzword used to describe massive volumes of data that provides opportunities of exploring new insights through data analytics. However, big data is mostly structured but can be semi-structured or unstructured. It is normally so large that it is not only difficult but also slow to process using traditional computing systems. One of the solutions is to format the data as graph data structures and process them on shared memory architecture to use fast and novel policies such as transactional memory. In most graph applications in big data type problems such as bioinformatics, social networks, and cybersecurity, graphs are sparse in nature. Due to this sparsity, we have the opportunity to use Transactional Memory (TM) as the synchronization policy for critical sections to speedup applications. At low conflict probability TM performs better than most synchronization policies due to its inherent non-blocking characteristics. TM can be implemented in Software, Hardware or a combination of both. However, hardware TM implementations are fast but limited by scarce hardware resources while software implementations have high overheads which can degrade performance. In this paper, we develop a low overhead, yet simple, dynamically adaptive (i.e., at runtime) hybrid (i.e., combines hardware and software) TM (DyAd-HyTM) scheme that combines the best features of both Hardware TM (HTM) and Software TM (STM) while adapting to application's requirements. It performs better than coarse-grain lock by up to 8.12x, a low overhead STM by up to 2.68x, a couple of implementations of HTMs (by up to 2.59x), and other HyTMs (by up to 1.55x) for SSCA-2 graph benchmark running on a multicore machine with a large shared memory.