Biblio
Filters: Author is Li, Lei [Clear All Filters]
Multi-subject information interaction and one-way hash chain authentication method for V2G application in Internet of Vehicles. 2022 4th International Conference on Intelligent Information Processing (IIP). :134–137.
.
2022. Internet of Vehicles consists of a three-layer architecture of electric vehicles, charging piles, and a grid dispatch management control center. Therefore, V2G presents multi-level, multi-agent and frequent information interaction, which requires a highly secure and lightweight identity authentication method. Based on the characteristics of Internet of Vehicles, this paper designs a multi-subject information interaction and one-way hash chain authentication method, it includes one-way hash chain and key distribution update strategy. The operation experiment of multiple electric vehicles and charging piles shows that the algorithm proposed in this paper can meet the V2G ID authentication requirements of Internet of Vehicles, and has the advantages of lightweight and low consumption. It is of great significance to improve the security protection level of Internet of Vehicles V2G.
Power System Forced Oscillation Caused by Malicious Mode Attack via Coordinated Charging. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1838–1844.
.
2022. For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.
Dynamic Access Control Technology Based on Zero-Trust Light Verification Network Model. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :712–715.
.
2021. With the rise of the cloud computing and services, the network environments tend to be more complex and enormous. Security control becomes more and more hard due to the frequent and various access and requests. There are a few techniques to solve the problem which developed separately in the recent years. Network Micro-Segmentation provides the system the ability to keep different parts separated. Zero Trust Model ensures the network is access to trusted users and business by applying the policy that verify and authenticate everything. With the combination of Segmentation and Zero Trust Model, a system will obtain the ability to control the access to organizations' or industrial valuable assets. To implement the cooperation, the paper designs a strategy named light verification to help the process to be painless for the cost of inspection. The strategy was found to be effective from the perspective of the technical management, security and usability.
IR-Drop Calibration for Hardware Trojan Detection. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :418–421.
.
2020. Process variation is the critical issue in hardware Trojan detection. In the state-of-art works, ring oscillators are employed to address this problem. But ring oscillators are very sensitive to IR-drop effect, which exists ICs. In this paper, based on circuit theory, a IR-drop calibration method is proposed. The nominal power supply voltage and the others power supply voltage with a very small difference of the nominal power supply voltage are applied to the test chip. It is assumed that they have the same IR-drop $Δ$V. Combined with these measured data, the value of Vth + $Δ$V, can be obtained by mathematic analysis. The typical Vth from circuit simulation is used to compute $Δ$V. We studied the proposed method in a tested chip.
Hardware Trojan Detection Method Based on the Frequency Domain Characteristics of Power Consumption. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :410–413.
.
2020. Hardware security has long been an important issue in the current IC design. In this paper, a hardware Trojan detection method based on frequency domain characteristics of power consumption is proposed. For some HTs, it is difficult to detect based on the time domain characteristics, these types of hardware Trojan can be analyzed in the frequency domain, and Mahalanobis distance is used to classify designs with or without HTs. The experimental results demonstrate that taking 10% distance as the criterion, the hardware Trojan detection results in the frequency domain have almost no failure cases in all the tested designs.
Information Privacy of Cyber Transportation System: Opportunities and Challenges. Proceedings of the 6th Annual Conference on Research in Information Technology. :23–28.
.
2017. The Cyber Transport Systems (CTSs) have made significant advancement along with the development of the information technology and transportation industries worldwide. The rapid proliferation of cyber transportation technology provides rich information and infinite possibilities for our society to understand and use the complex inherent mechanism, which governs the novel intelligence world. In addition, applying information technology to cyber transportation applications open a range of new application scenarios, such as vehicular safety, energy efficiency, reduced pollution, and intelligent maintenance services. However, while enjoying the services and convenience provided by CTS, users, vehicles, even the systems might lose privacy during information transmitting and processing. This paper summarizes the state-of-art research findings on information privacy issues in a broad range. We firstly introduce the typical types of information and the basic mechanisms of information communication in CTS. Secondly, considering the information privacy issues of CTS, we present the literature on information privacy issues and privacy protection approaches in CTS. Thirdly, we discuss the emerging challenges and the opportunities for the information technology community in CTS.