Biblio
This paper explores the potential of enabling SDN security and monitoring services by piggybacking on SDN reactive routing. As a case study, we implement and evaluate a piggybacking based intrusion prevention system called SDN-Defense. Our study of university WiFi traffic traces reveals that up to 73% of malicious flows can be detected by inspecting just the first three packets of a flow, and 90% of malicious flows from the first four packets. Using such empirical insights, we propose to forward the first K packets of each new flow to an augmented SDN controller for security inspection, where K is a dynamically configurable parameter. We characterize the cost-benefit trade-offs of SDN-Defense using real wireless traces and discuss potential scalability issues. Finally, we discuss other applications which can be enhanced by using our proposed piggybacking approach.