Biblio
Image and video super-resolution (SR) has been explored for several decades. However, few works are integrated into practical systems for real-time image and video SR. In this work, we present a real-time deep video SpaTial Resolution UpConversion SysTem (STRUCT++). Our demo system achieves real-time performance (50 fps on CPU for CIF sequences and 45 fps on GPU for HDTV videos) and provides several functions: 1) batch processing; 2) full resolution comparison; 3) local region zooming in. These functions are convenient for super-resolution of a batch of videos (at most 10 videos in parallel), comparisons with other approaches and observations of local details of the SR results. The system is built on a Global context aggregation and Local queue jumping Network (GLNet). It has a thinner and deeper network structure to aggregate global context with an additional local queue jumping path to better model local structures of the signal. GLNet achieves state-of-the-art performance for real-time video SR.