Visible to the public Biblio

Filters: Author is Papernot, Nicolas  [Clear All Filters]
2019-08-05
Papernot, Nicolas.  2018.  A Marauder's Map of Security and Privacy in Machine Learning: An Overview of Current and Future Research Directions for Making Machine Learning Secure and Private. Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. :1–1.
There is growing recognition that machine learning (ML) exposes new security and privacy vulnerabilities in software systems, yet the technical community's understanding of the nature and extent of these vulnerabilities remains limited but expanding. In this talk, we explore the threat model space of ML algorithms through the lens of Saltzer and Schroeder's principles for the design of secure computer systems. This characterization of the threat space prompts an investigation of current and future research directions. We structure our discussion around three of these directions, which we believe are likely to lead to significant progress. The first seeks to design mechanisms for assembling reliable records of compromise that would help understand the degree to which vulnerabilities are exploited by adversaries, as well as favor psychological acceptability of machine learning applications. The second encompasses a spectrum of approaches to input verification and mediation, which is a prerequisite to enable fail-safe defaults in machine learning systems. The third pursues formal frameworks for security and privacy in machine learning, which we argue should strive to align machine learning goals such as generalization with security and privacy desirata like robustness or privacy. Key insights resulting from these three directions pursued both in the ML and security communities are identified and the effectiveness of approaches are related to structural elements of ML algorithms and the data used to train them. We conclude by systematizing best practices in our growing community.
2018-11-19
Papernot, Nicolas, McDaniel, Patrick, Goodfellow, Ian, Jha, Somesh, Celik, Z. Berkay, Swami, Ananthram.  2017.  Practical Black-Box Attacks Against Machine Learning. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :506–519.

Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and labeled by the target DNN. We use the local substitute to craft adversarial examples, and find that they are misclassified by the targeted DNN. To perform a real-world and properly-blinded evaluation, we attack a DNN hosted by MetaMind, an online deep learning API. We find that their DNN misclassifies 84.24% of the adversarial examples crafted with our substitute. We demonstrate the general applicability of our strategy to many ML techniques by conducting the same attack against models hosted by Amazon and Google, using logistic regression substitutes. They yield adversarial examples misclassified by Amazon and Google at rates of 96.19% and 88.94%. We also find that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.