Biblio
Filters: Author is Pal, Partha [Clear All Filters]
Resiliency and Antifragility in Modern Software Systems- A Concept Paper. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :263—268.
.
2021. The pervasive use of software systems and current threat environment demand that software systems not only survive cyberattacks, but also bounce back better, stronger, and faster. However, what constitutes a modern software system? Where should the security and resilience mechanisms be-in the application software or in the cloud environment where it runs? In this concept paper, we set up a context to pose these questions and present a roadmap to answer them. We describe challenges to achieving resilience and beyond, and outline potential research directions to stimulate discussion in the workshop.
Empirical Evaluation of the A3 Environment: Evaluating Defenses Against Zero-Day Attacks. 2015 10th International Conference on Availability, Reliability and Security. :80–89.
.
2015. A3 is an execution management environment that aims to make network-facing applications and services resilient against zero-day attacks. A3 recently underwent two adversarial evaluations of its defensive capabilities. In one, A3 defended an App Store used in a Capture the Flag (CTF) tournament, and in the other, a tactically relevant network service in a red team exercise. This paper describes the A3 defensive technologies evaluated, the evaluation results, and the broader lessons learned about evaluations for technologies that seek to protect critical systems from zero-day attacks.
HYDRA: Hypothesis Driven Repair Automation. Proceedings of the 13th International Conference on Availability, Reliability and Security. :8:1–8:10.
.
2018. HYDRA is an automated mechanism to repair code in response to successful attacks. Given a set of malicious inputs that include the attack and a set of benign inputs that do not, along with an ability to test the victim application with these labelled inputs, HYDRA quickly provides rank ordered patches to close the exploited vulnerability. HYDRA also produces human-readable summaries of its findings and repair actions to aid the manual vulnerability mitigation process. We tested HYDRA using 8 zero-days, HYDRA produced patches that stopped the attacks in all 8 cases and preserved application functionality in 7 of the 8 cases.
Adaptive Resource Management Enabling Deception (ARMED). Proceedings of the 12th International Conference on Availability, Reliability and Security. :52:1–52:8.
.
2017. Distributed Denial of Service (DDoS) attacks routinely disrupt access to critical services. Mitigation of these attacks often relies on planned over-provisioning or elastic provisioning of resources, and third-party monitoring, analysis, and scrubbing of network traffic. While volumetric attacks which saturate a victim's network are most common, non-volumetric, low and slow, DDoS attacks can achieve their goals without requiring high traffic volume by targeting vulnerable network protocols or protocol implementations. Non-volumetric attacks, unlike their noisy counterparts, require more sophisticated detection mechanisms, and typically have only post-facto and targeted protocol/application mitigations. In this paper, we introduce our work under the Adaptive Resource Management Enabling Deception (ARMED) effort, which is developing a network-level approach to automatically mitigate sophisticated DDoS attacks through deception-focused adaptive maneuvering. We describe the concept, implementation, and initial evaluation of the ARMED Network Actors (ANAs) that facilitate transparent interception, sensing, analysis, and mounting of adaptive responses that can disrupt the adversary's decision process.