Visible to the public Biblio

Filters: Author is Yuan, L.  [Clear All Filters]
2020-12-21
Yang, B., Liu, F., Yuan, L., Zhang, Y..  2020.  6LoWPAN Protocol Based Infrared Sensor Network Human Target Locating System. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1773–1779.
This paper proposes an infrared sensor human target locating system for the Internet of Things. In this design, the wireless sensor network is designed and developed to detect human targets by using 6LoWPAN protocol and pyroelectric infrared (PIR) sensors. Based on the detection data acquired by multiple sensor nodes, K-means++ clustering algorithm combined with cost function is applied to complete human target location in a 10m×10m detection area. The experimental results indicate the human locating system works well and the user can view the location information on the terminal devices.
2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.