Visible to the public Biblio

Filters: Author is Wang, Guilin  [Clear All Filters]
2022-03-07
Vaidya, Ruturaj, Kulkarni, Prasad A., Jantz, Michael R..  2021.  Explore Capabilities and Effectiveness of Reverse Engineering Tools to Provide Memory Safety for Binary Programs. Information Security Practice and Experience. :11–31.
Any technique to ensure memory safety requires knowledge of (a) precise array bounds and (b) the data types accessed by memory load/store and pointer move instructions (called, owners) in the program. While this information can be effectively derived by compiler-level approaches much of this information may be lost during the compilation process and become unavailable to binary-level tools. In this work we conduct the first detailed study on how accurately can this information be extracted or reconstructed by current state-of-the-art static reverse engineering (RE) platforms for binaries compiled with and without debug symbol information. Furthermore, it is also unclear how the imprecision in array bounds and instruction owner information that is obtained by the RE tools impacts the ability of techniques to detect illegal memory accesses at run-time. We study this issue by designing, building, and deploying a novel binary-level technique to assess the properties and effectiveness of the information provided by the static RE algorithms in the first stage to guide the run-time instrumentation to detect illegal memory accesses in the decoupled second stage. Our work explores the limitations and challenges for static binary analysis tools to develop accurate binary-level techniques to detect memory errors.
2018-11-28
Pointcheval, David, Wang, Guilin.  2017.  VTBPEKE: Verifier-Based Two-Basis Password Exponential Key Exchange. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :301–312.

PAKE protocols, for Password-Authenticated Key Exchange, enable two parties to establish a shared cryptographically strong key over an insecure network using a short common secret as authentication means. After the seminal work by Bellovin and Merritt, with the famous EKE, for Encrypted Key Exchange, various settings and security notions have been defined, and many protocols have been proposed. In this paper, we revisit the promising SPEKE, for Simple Password Exponential Key Exchange, proposed by Jablon. The only known security analysis works in the random oracle model under the CDH assumption, but in the multiplicative groups of finite fields only (subgroups of Zp*), which means the use of large elements and so huge communications and computations. Our new instantiation (TBPEKE, for Two-Basis Password Exponential Key Exchange) applies to any group, and our security analysis requires a DLIN-like assumption to hold. In particular, one can use elliptic curves, which leads to a better efficiency, at both the communication and computation levels. We additionally consider server corruptions, which immediately leak all the passwords to the adversary with symmetric PAKE. We thus study an asymmetric variant, also known as VPAKE, for Verifier-based Password Authenticated Key Exchange. We then propose a verifier-based variant of TBPEKE, the so-called VTBPEKE, which is also quite efficient, and resistant to server-compromise.