Visible to the public Biblio

Filters: Author is Choo, K. R.  [Clear All Filters]
2021-04-27
Chen, B., Wu, L., Li, L., Choo, K. R., He, D..  2020.  A Parallel and Forward Private Searchable Public-Key Encryption for Cloud-Based Data Sharing. IEEE Access. 8:28009–28020.
Data sharing through the cloud is flourishing with the development of cloud computing technology. The new wave of technology will also give rise to new security challenges, particularly the data confidentiality in cloud-based sharing applications. Searchable encryption is considered as one of the most promising solutions for balancing data confidentiality and usability. However, most existing searchable encryption schemes cannot simultaneously satisfy requirements for both high search efficiency and strong security due to lack of some must-have properties, such as parallel search and forward security. To address this problem, we propose a variant searchable encryption with parallelism and forward privacy, namely the parallel and forward private searchable public-key encryption (PFP-SPE). PFP-SPE scheme achieves both the parallelism and forward privacy at the expense of slightly higher storage costs. PFP-SPE has similar search efficiency with that of some searchable symmetric encryption schemes but no key distribution problem. The security analysis and the performance evaluation on a real-world dataset demonstrate that the proposed scheme is suitable for practical application.
2021-04-08
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..  2020.  Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
2020-12-11
Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K. R..  2019.  Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :296—303.

The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.

2018-12-10
Azmoodeh, A., Dehghantanha, A., Choo, K. R..  2018.  Robust Malware Detection for Internet Of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Transactions on Sustainable Computing. :1–1.

Internet of Things (IoT) in military setting generally consists of a diverse range of Internet-connected devices and nodes (e.g. medical devices to wearable combat uniforms), which are a valuable target for cyber criminals, particularly state-sponsored or nation state actors. A common attack vector is the use of malware. In this paper, we present a deep learning based method to detect Internet Of Battlefield Things (IoBT) malware via the device's Operational Code (OpCode) sequence. We transmute OpCodes into a vector space and apply a deep Eigenspace learning approach to classify malicious and bening application. We also demonstrate the robustness of our proposed approach in malware detection and its sustainability against junk code insertion attacks. Lastly, we make available our malware sample on Github, which hopefully will benefit future research efforts (e.g. for evaluation of proposed malware detection approaches).