Visible to the public Biblio

Filters: Author is Khan, F.  [Clear All Filters]
2020-11-02
Aman, W., Khan, F..  2019.  Ontology-based Dynamic and Context-aware Security Assessment Automation for Critical Applications. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :644–647.

Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.

2019-03-22
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

2019-01-16
Khan, F., Quweider, M., Torres, M., Goldsmith, C., Lei, H., Zhang, L..  2018.  Block Level Streaming Based Alternative Approach for Serving a Large Number of Workstations Securely and Uniformly. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :92–98.
There are different traditional approaches to handling a large number of computers or workstations in a campus setting, ranging from imaging to virtualized environments. The common factor among the traditional approaches is to have a user workstation with a local hard drive (nonvolatile storage), scratchpad volatile memory, a CPU (Central Processing Unit) and connectivity to access resources on the network. This paper presents the use of block streaming, normally used for storage, to serve operating system and applications on-demand over the network to a workstation, also referred to as a client, a client computer, or a client workstation. In order to avoid per seat licensing, an Open Source solution is used, and in order to minimize the field maintenance and meet security privacy constraints, a workstation need not have a permanent storage such as a hard disk drive. A complete blue print, based on performance analyses, is provided to determine the type of network architecture, servers, workstations per server, and minimum workstation configuration, suitable for supporting such a solution. The results of implementing the proposed solution campus wide, supporting more than 450 workstations, are presented as well.