Visible to the public Biblio

Filters: Author is Criswell, John  [Clear All Filters]
2020-10-26
Criswell, John, Zhou, Jie, Gravani, Spyridoula, Hu, Xiaoyu.  2019.  PrivAnalyzer: Measuring the Efficacy of Linux Privilege Use. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :593–604.
Operating systems such as Linux break the power of the root user into separate privileges (which Linux calls capabilities) and give processes the ability to enable privileges only when needed and to discard them permanently when the program no longer needs them. However, there is no method of measuring how well the use of such facilities reduces the risk of privilege escalation attacks if the program has a vulnerability. This paper presents PrivAnalyzer, an automated tool that measures how effectively programs use Linux privileges. PrivAnalyzer consists of three components: 1) AutoPriv, an existing LLVM-based C/C++ compiler which uses static analysis to transform a program that uses Linux privileges into a program that safely removes them when no longer needed, 2) ChronoPriv, a new LLVM C/C++ compiler pass that performs dynamic analysis to determine for how long a program retains various privileges, and 3) ROSA, a new bounded model checker that can model the damage a program can do at each program point if an attacker can exploit the program and abuse its privileges. We use PrivAnalyzer to determine how long five privileged open source programs retain the ability to cause serious damage to a system and find that merely transforming a program to drop privileges does not significantly improve security. However, we find that simple refactoring can considerably increase the efficacy of Linux privileges. In two programs that we refactored, we reduced the percentage of execution in which a device file can be read and written from 97% and 88% to 4% and 1%, respectively.
2019-01-21
Dong, Xiaowan, Shen, Zhuojia, Criswell, John, Cox, Alan, Dwarkadas, Sandhya.  2018.  Spectres, Virtual Ghosts, and Hardware Support. Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy. :5:1–5:9.

Side-channel attacks, such as Spectre and Meltdown, that leverage speculative execution pose a serious threat to computing systems. Worse yet, such attacks can be perpetrated by compromised operating system (OS) kernels to bypass defenses that protect applications from the OS kernel. This work evaluates the performance impact of three different defenses against in-kernel speculation side-channel attacks within the context of Virtual Ghost, a system that protects user data from compromised OS kernels: Intel MPX bounds checks, which require a memory fence; address bit-masking and testing, which creates a dependence between the bounds check and the load/store; and the use of separate virtual address spaces for applications, the OS kernel, and the Virtual Ghost virtual machine, forcing a speculation boundary. Our results indicate that an instrumentation-based bit-masking approach to protection incurs the least overhead by minimizing speculation boundaries. Our work also highlights possible improvements to Intel MPX that could help mitigate speculation side-channel attacks at a lower cost.