Biblio
The advent and widespread adoption of wearable cameras and autonomous robots raises important issues related to privacy. The mobile cameras on these systems record and may re-transmit enormous amounts of video data that can then be used to identify, track, and characterize the behavior of the general populous. This paper presents a preliminary computational architecture designed to preserve specific types of privacy over a video stream by identifying categories of individuals, places, and things that require higher than normal privacy protection. This paper describes the architecture as a whole as well as preliminary results testing aspects of the system. Our intention is to implement and test the system on ground robots and small UAVs and demonstrate that the system can provide selective low-level masking or deletion of data requiring higher privacy protection.