Visible to the public Biblio

Filters: Author is Önen, Melek  [Clear All Filters]
2019-12-17
Gritti, Clémentine, Molva, Refik, Önen, Melek.  2018.  Lightweight Secure Bootstrap and Message Attestation in the Internet of Things. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :775-782.

Internet of Things (IoT) offers new opportunities for business, technology and science but it also raises new challenges in terms of security and privacy, mainly because of the inherent characteristics of this environment: IoT devices come from a variety of manufacturers and operators and these devices suffer from constrained resources in terms of computation, communication and storage. In this paper, we address the problem of trust establishment for IoT and propose a security solution that consists of a secure bootstrap mechanism for device identification as well as a message attestation mechanism for aggregate response validation. To achieve both security requirements, we approach the problem in a confined environment, named SubNets of Things (SNoT), where various devices depend on it. In this context, devices are uniquely and securely identified thanks to their environment and their role within it. Additionally, the underlying message authentication technique features signature aggregation and hence, generates one compact response on behalf of all devices in the subnet.

2019-11-25
Vasilopoulos, Dimitrios, Elkhiyaoui, Kaoutar, Molva, Refik, Önen, Melek.  2018.  POROS: Proof of Data Reliability for Outsourced Storage. Proceedings of the 6th International Workshop on Security in Cloud Computing. :27–37.
We introduce POROS that is a new solution for proof of data reliability. In addition to the integrity of the data outsourced to a cloud storage system, proof of data reliability assures the customers that the cloud storage provider (CSP) has provisioned sufficient amounts of redundant information along with original data segments to be able to guarantee the maintenance of the data in the face of corruption. In spite of meeting a basic service requirement, the placement of the data repair capability at the CSP raises a challenging issue with respect to the design of a proof of data reliability scheme. Existing schemes like Proof of Data Possession (PDP) and Proof of Retrievability (PoR) fall short of providing proof of data reliability to customers, since those schemes are not designed to audit the redundancy mechanisms of the CSP. Thus, in addition to verifying the possession of the original data segments, a proof of data reliability scheme must also assure that sufficient redundancy information is kept at storage. Thanks to some combination of PDP with time constrained operations, POROS guarantees that a rationale CSP would not compute redundancy information on demand upon proof of data reliability requests but instead would store it at rest. As a result of bestowing the CSP with the repair function, POROS allows for the automatic maintenance of data by the storage provider without any interaction with the customers.
2019-06-17
Van Rompay, Cédric, Molva, Refik, Önen, Melek.  2018.  Secure and Scalable Multi-User Searchable Encryption. Proceedings of the 6th International Workshop on Security in Cloud Computing. :15–25.
By allowing a large number of users to behave as readers or writers, Multi-User Searchable Encryption (MUSE) raises new security and performance challenges beyond the typical requirements of Symmetric Searchable Encryption (SSE). In this paper we identify two core mandatory requirements of MUSE protocols being privacy in face of users colluding with the CSP and low complexity for the users, pointing that no existing MUSE protocol satisfies these two requirements at the same time. We then come up with the first MUSE protocol that satisfies both of them. The design of the protocol also includes new constructions for a secure variant of Bloom Filters (BFs) and multi-query Oblivious Transfer (OT).