Visible to the public Biblio

Filters: Author is Wang, Hong  [Clear All Filters]
2022-03-15
Wang, Hong, Liu, Xiangyang, Xie, Yunhong, Zeng, Han.  2021.  The Scalable Group Testing of Invalid Signatures based on Latin Square in Wireless Sensors Networks. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1153—1158.
Digital signature is more appropriate for message security in Wireless Sensors Networks (WSNs), which is energy-limited, than costly encryption. However, it meets with difficulty of verification when a large amount of message-signature pairs swarm into the central node in WSNs. In this paper, a scalable group testing algorithm based on Latin square (SGTLS) is proposed, which focus on both batch verification of signatures and invalid signature identification. To address the problem of long time-delay during individual verification, we adapt aggregate signature for batch verification so as to judge whether there are any invalid signatures among the collection of signatures once. In particular, when batch verification fails, an invalid signature identification algorithm is presented based on scalable OR-checking matrix of Latin square, which can adjust the number of group testing by itself with the variation of invalid signatures. Comprehensive analyses show that SGTLS has more advantages, such as scalability, suitability for parallel computing and flexible design (Latin square is popular), than other algorithm.
2022-03-01
Man, Jiaxi, Li, Wei, Wang, Hong, Ma, Weidong.  2021.  On the Technology of Frequency Hopping Communication Network-Station Selection. 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). :35–41.
In electronic warfare, communication may not counter reconnaissance and jamming without the help of network-station selection of frequency hopping. The competition in the field of electromagnetic spectrum is becoming more and more fierce with the increasingly complex electromagnetic environment of modern battlefield. The research on detection, identification, parameter estimation and network station selection of frequency hopping communication network has aroused the interest of scholars both at home and abroad, which has been summarized in this paper. Firstly, the working mode and characteristics of two kinds of FH communication networking modes synchronous orthogonal network and asynchronous non orthogonal network are introduced. Then, through the analysis of FH signals time hopping, frequency hopping, bandwidth, frequency, direction of arrival, bad time-frequency analysis, clustering analysis and machine learning method, the feature-based method is adopted Parameter selection technology is used to sort FH network stations. Finally, the key and difficult points of current research on FH communication network separation technology and the research status of blind source separation technology are introduced in details in this paper.
2019-01-31
Xu, Ke, Li, Yu, Huang, Bo, Liu, Xiangkai, Wang, Hong, Wu, Zhuoyan, Yan, Zhanpeng, Tu, Xueying, Wu, Tongqing, Zeng, Daibing.  2018.  A Low-Power 4096x2160@30Fps H.265/HEVC Video Encoder for Smart Video Surveillance. Proceedings of the International Symposium on Low Power Electronics and Design. :38:1–38:6.

This paper presents the design and VLSI implementation of a low-power HEVC main profile encoder, which is able to process up to 4096x2160@30fps 4:2:0 encoding in real-time with five-stage pipeline architecture. A pyramid ME (Motion Estimation) engine is employed to reduce search complexity. To compensate for the video sequences with fast moving objects, GME (Global Motion Estimation) are introduced to alleviate the effect of limited search range. We also implement an alternative 5x5 search along with 3x3 to boost video quality. For intra mode decision, original pixels, instead of reconstructed ones are used to reduce pipeline stall. The encoder supports DVFS (Dynamic Voltage and Frequency Scaling) and features three operating modes, which helps to reduce power consumption by 25%. Scalable quality that trades encoding quality for power by reducing size of search range and intra prediction candidates, achieves 11.4% power reduction with 3.5% quality degradation. Furthermore, a lossless frame buffer compression is proposed which reduced DDR bandwidth by 49.1% and power consumption by 13.6%. The entire video surveillance SoC is fabricated with TSMC 28nm technology with 1.96 mm2 area. It consumes 2.88M logic gates and 117KB SRAM. The measured power consumption is 103mW at 350MHz for 4K encoding with high-quality mode. The 0.39nJ/pixel of energy efficiency of this work, which achieves 42% $\backslash$textasciitilde 97% power reduction as compared with reference designs, make it ideal for real-time low-power smart video surveillance applications.