Visible to the public Biblio

Filters: Author is Lin, Xue  [Clear All Filters]
2020-09-04
Zhao, Pu, Liu, Sijia, Chen, Pin-Yu, Hoang, Nghia, Xu, Kaidi, Kailkhura, Bhavya, Lin, Xue.  2019.  On the Design of Black-Box Adversarial Examples by Leveraging Gradient-Free Optimization and Operator Splitting Method. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). :121—130.
Robust machine learning is currently one of the most prominent topics which could potentially help shaping a future of advanced AI platforms that not only perform well in average cases but also in worst cases or adverse situations. Despite the long-term vision, however, existing studies on black-box adversarial attacks are still restricted to very specific settings of threat models (e.g., single distortion metric and restrictive assumption on target model's feedback to queries) and/or suffer from prohibitively high query complexity. To push for further advances in this field, we introduce a general framework based on an operator splitting method, the alternating direction method of multipliers (ADMM) to devise efficient, robust black-box attacks that work with various distortion metrics and feedback settings without incurring high query complexity. Due to the black-box nature of the threat model, the proposed ADMM solution framework is integrated with zeroth-order (ZO) optimization and Bayesian optimization (BO), and thus is applicable to the gradient-free regime. This results in two new black-box adversarial attack generation methods, ZO-ADMM and BO-ADMM. Our empirical evaluations on image classification datasets show that our proposed approaches have much lower function query complexities compared to state-of-the-art attack methods, but achieve very competitive attack success rates.
2019-02-08
Zhao, Pu, Liu, Sijia, Wang, Yanzhi, Lin, Xue.  2018.  An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks. Proceedings of the 26th ACM International Conference on Multimedia. :1065-1073.

Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. In a successful adversarial attack, the targeted mis-classification should be achieved with the minimal distortion added. In the literature, the added distortions are usually measured by \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ norms, namely, L\_0, L\_1, L\_2, and L\_$ınfty$ attacks, respectively. However, there lacks a versatile framework for all types of adversarial attacks. This work for the first time unifies the methods of generating adversarial examples by leveraging ADMM (Alternating Direction Method of Multipliers), an operator splitting optimization approach, such that \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ attacks can be effectively implemented by this general framework with little modifications. Comparing with the state-of-the-art attacks in each category, our ADMM-based attacks are so far the strongest, achieving both the 100% attack success rate and the minimal distortion.