Biblio
Filters: Author is Le, Duc C. [Clear All Filters]
Machine Learning Based Insider Threat Modelling and Detection. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1–6.
.
2019. Recently, malicious insider attacks represent one of the most damaging threats to companies and government agencies. This paper proposes a new framework in constructing a user-centered machine learning based insider threat detection system on multiple data granularity levels. System evaluations and analysis are performed not only on individual data instances but also on normal and malicious insiders, where insider scenario specific results and delay in detection are reported and discussed. Our results show that the machine learning based detection system can learn from limited ground truth and detect new malicious insiders with a high accuracy.
Benchmarking Evolutionary Computation Approaches to Insider Threat Detection. Proceedings of the Genetic and Evolutionary Computation Conference. :1286–1293.
.
2018. Insider threat detection represents a challenging problem to companies and organizations where malicious actions are performed by authorized users. This is a highly skewed data problem, where the huge class imbalance makes the adaptation of learning algorithms to the real world context very difficult. In this work, applications of genetic programming (GP) and stream active learning are evaluated for insider threat detection. Linear GP with lexicase/multi-objective selection is employed to address the problem under a stationary data assumption. Moreover, streaming GP is employed to address the problem under a non-stationary data assumption. Experiments conducted on a publicly available corporate data set show the capability of the approaches in dealing with extreme class imbalance, stream learning and adaptation to the real world context.