Visible to the public Biblio

Filters: Author is Onireti, Oluwakayode  [Clear All Filters]
2017-03-07
Onireti, Oluwakayode, Qadir, Junaid, Imran, Muhammad Ali, Sathiaseelan, Arjuna.  2016.  Will 5G See Its Blind Side? Evolving 5G for Universal Internet Access Proceedings of the 2016 Workshop on Global Access to the Internet for All. :1–6.

Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones—the fastest growing technology in the world that now reaches around 80% of humanity—can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems.

2015-05-05
Mohamed, Abdelrahim, Onireti, Oluwakayode, Qi, Yinan, Imran, Ali, Imran, Muhammed, Tafazolli, Rahim.  2014.  Physical Layer Frame in Signalling-Data Separation Architecture: Overhead and Performance Evaluation. European Wireless 2014; 20th European Wireless Conference; Proceedings of. :1-6.

Conventional cellular systems are dimensioned according to a worst case scenario, and they are designed to ensure ubiquitous coverage with an always-present wireless channel irrespective of the spatial and temporal demand of service. A more energy conscious approach will require an adaptive system with a minimum amount of overhead that is available at all locations and all times but becomes functional only when needed. This approach suggests a new clean slate system architecture with a logical separation between the ability to establish availability of the network and the ability to provide functionality or service. Focusing on the physical layer frame of such an architecture, this paper discusses and formulates the overhead reduction that can be achieved in next generation cellular systems as compared with the Long Term Evolution (LTE). Considering channel estimation as a performance metric whilst conforming to time and frequency constraints of pilots spacing, we show that the overhead gain does not come at the expense of performance degradation.