Visible to the public Biblio

Filters: Author is Touchette, D.  [Clear All Filters]
2019-02-14
Arrazola, J. M., Marwah, A., Lovitz, B., Touchette, D., Lutkenhaus, N..  2018.  Cryptographic and Non-Cryptographic Network Applications and Their Optical Implementations. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM). :9-10.
The use of quantum mechanical signals in communication opens up the opportunity to build new communication systems that accomplishes tasks that communication with classical signals structures cannot achieve. Prominent examples are Quantum Key Distribution Protocols, which allows the generation of secret keys without computational assumptions of adversaries. Over the past decade, protocols have been developed that achieve tasks that can also be accomplished with classical signals, but the quantum version of the protocol either uses less resources, or leaks less information between the involved parties. The gap between quantum and classical can be exponential in the input size of the problems. Examples are the comparison of data, the scheduling of appointments and others. Until recently, it was thought that these protocols are of mere conceptual value, but that the quantum advantage could not be realized. We changed that by developing quantum optical versions of these abstract protocols that can run with simple laser pulses, beam-splitters and detectors. [1-3] By now the first protocols have been successfully implemented [4], showing that a quantum advantage can be realized. The next step is to find and realize protocols that have a high practical value.