Visible to the public Biblio

Filters: Author is Azab, M.  [Clear All Filters]
2018-05-09
Azab, M., Fortes, J. A. B..  2017.  Towards Proactive SDN-Controller Attack and Failure Resilience. 2017 International Conference on Computing, Networking and Communications (ICNC). :442–448.

SDN networks rely mainly on a set of software defined modules, running on generic hardware platforms, and managed by a central SDN controller. The tight coupling and lack of isolation between the controller and the underlying host limit the controller resilience against host-based attacks and failures. That controller is a single point of failure and a target for attackers. ``Linux-containers'' is a successful thin virtualization technique that enables encapsulated, host-isolated execution-environments for running applications. In this paper we present PAFR, a controller sandboxing mechanism based on Linux-containers. PAFR enables controller/host isolation, plug-and-play operation, failure-and-attack-resilient execution, and fast recovery. PAFR employs and manages live remote checkpointing and migration between different hosts to evade failures and attacks. Experiments and simulations show that the frequent employment of PAFR's live-migration minimizes the chance of successful attack/failure with limited to no impact on network performance.

2017-12-12
Ghourab, E. M., Azab, M., Rizk, M., Mokhtar, A..  2017.  Security versus reliability study for power-limited mobile IoT devices. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :430–438.

Internet of Things (IoT) depicts an intelligent future, where any IoT-based devices having a sensorial and computing capabilities to interact with each other. Recently, we are living in the area of internet and rapidly moving towards a smart planet where devices are capable to be connected to each other. Cooperative ad-hoc vehicle systems are the main driving force for the actualization of IoT-based concept. Vehicular Ad-hoc Network (VANET) is considered as a promising platform for the intelligent wireless communication system. This paper presents and analyzes the tradeoffs between the security and reliability of the IoT-based VANET system in the presence of eavesdropping attacks using smart vehicle relays based on opportunistic relay selection (ORS) scheme. Then, the optimization of the distance between the source (S), destination (D), and Eavesdropper (E) is illustrated in details, showing the effect of this parameter on the IoT-based network. In order to improve the SRT, we quantify the attainable SRT improvement with variable distances between IoT-based nodes. It is shown that given the maximum tolerable Intercept Probability (IP), the Outage Probability (OP) of our proposed model approaches zero for Ge → ∞, where Ge is distance ratio between S — E via the vehicle relay (R).

2015-05-06
Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

2015-05-05
Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

Farag, M.M., Azab, M., Mokhtar, B..  2014.  Cross-layer security framework for smart grid: Physical security layer. Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE PES. :1-7.

Security is a major challenge preventing wide deployment of the smart grid technology. Typically, the classical power grid is protected with a set of isolated security tools applied to individual grid components and layers ignoring their cross-layer interaction. Such an approach does not address the smart grid security requirements because usually intricate attacks are cross-layer exploiting multiple vulnerabilities at various grid layers and domains. We advance a conceptual layering model of the smart grid and a high-level overview of a security framework, termed CyNetPhy, towards enabling cross-layer security of the smart grid. CyNetPhy tightly integrates and coordinates between three interrelated, and highly cooperative real-time security systems crossing section various layers of the grid cyber and physical domains to simultaneously address the grid's operational and security requirements. In this article, we present in detail the physical security layer (PSL) in CyNetPhy. We describe an attack scenario raising the emerging hardware Trojan threat in process control systems (PCSes) and its novel PSL resolution leveraging the model predictive control principles. Initial simulation results illustrate the feasibility and effectiveness of the PSL.