Visible to the public Biblio

Filters: Author is Kinsy, Michel A.  [Clear All Filters]
2023-04-28
Abraham, Jacob, Ehret, Alan, Kinsy, Michel A..  2022.  A Compiler for Transparent Namespace-Based Access Control for the Zeno Architecture. 2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED). :1–10.
With memory safety and security issues continuing to plague modern systems, security is rapidly becoming a first class priority in new architectures and competes directly with performance and power efficiency. The capability-based architecture model provides a promising solution to many memory vulnerabilities by replacing plain addresses with capabilities, i.e., addresses and related metadata. A key advantage of the capability model is compatibility with existing code bases. Capabilities can be implemented transparently to a programmer, i.e., without source code changes. Capabilities leverage semantics in source code to describe access permissions but require customized compilers to translate the semantics to their binary equivalent.In this work, we introduce a complete capabilityaware compiler toolchain for such secure architectures. We illustrate the compiler construction with a RISC-V capability-based architecture, called Zeno. As a securityfocused, large-scale, global shared memory architecture, Zeno implements a Namespace-based capability model for accesses. Namespace IDs (NSID) are encoded with an extended addressing model to associate them with access permission metadata elsewhere in the system. The NSID extended addressing model requires custom compiler support to fully leverage the protections offered by Namespaces. The Zeno compiler produces code transparently to the programmer that is aware of Namespaces and maintains their integrity. The Zeno assembler enables custom Zeno instructions which support secure memory operations. Our results show that our custom toolchain moderately increases the binary size compared to nonZeno compilation. We find the minimal overhead incurred by the additional NSID management instructions to be an acceptable trade-off for the memory safety and security offered by Zeno Namespaces.
2019-02-14
Bu, Lake, Kinsy, Michel A..  2018.  Hardening AES Hardware Implementations Against Fault and Error Inject Attacks. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :499-502.

The Advanced Encryption Standard (AES) enables secure transmission of confidential messages. Since its invention, there have been many proposed attacks against the scheme. For example, one can inject errors or faults to acquire the encryption keys. It has been shown that the AES algorithm itself does not provide a protection against these types of attacks. Therefore, additional techniques like error control codes (ECCs) have been proposed to detect active attacks. However, not all the proposed solutions show the adequate efficacy. For instance, linear ECCs have some critical limitations, especially when the injected errors are beyond their fault detection or tolerance capabilities. In this paper, we propose a new method based on a non-linear code to protect all four internal stages of the AES hardware implementation. With this method, the protected AES system is able to (a) detect all multiplicity of errors with a high probability and (b) correct them if the errors follow certain patterns or frequencies. Results shows that the proposed method provides much higher security and reliability to the AES hardware implementation with minimal overhead.