Visible to the public Biblio

Filters: Author is Quirchmayr, Gerald  [Clear All Filters]
2022-09-20
Herwanto, Guntur Budi, Quirchmayr, Gerald, Tjoa, A Min.  2021.  A Named Entity Recognition Based Approach for Privacy Requirements Engineering. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :406—411.
The presence of experts, such as a data protection officer (DPO) and a privacy engineer is essential in Privacy Requirements Engineering. This task is carried out in various forms including threat modeling and privacy impact assessment. The knowledge required for performing privacy threat modeling can be a serious challenge for a novice privacy engineer. We aim to bridge this gap by developing an automated approach via machine learning that is able to detect privacy-related entities in the user stories. The relevant entities include (1) the Data Subject, (2) the Processing, and (3) the Personal Data entities. We use a state-of-the-art Named Entity Recognition (NER) model along with contextual embedding techniques. We argue that an automated approach can assist agile teams in performing privacy requirements engineering techniques such as threat modeling, which requires a holistic understanding of how personally identifiable information is used in a system. In comparison to other domain-specific NER models, our approach achieves a reasonably good performance in terms of precision and recall.
2019-03-22
Shaaban, Abdelkader Magdy, Schmittner, Christoph, Gruber, Thomas, Mohamed, A. Baith, Quirchmayr, Gerald, Schikuta, Erich.  2018.  CloudWoT - A Reference Model for Knowledge-Based IoT Solutions. Proceedings of the 20th International Conference on Information Integration and Web-Based Applications & Services. :272-281.

Internet technology has changed how people work, live, communicate, learn and entertain. The internet adoption is rising rapidly, thus creating a new industrial revolution named "Industry 4.0". Industry 4.0 is the use of automation and data transfer in manufacturing technologies. It fosters several technological concepts, one of these is the Internet of Things (IoT). IoT technology is based on a big network of machines, objects, or people called "things" interacting together to achieve a common goal. These things are continuously generating vast amounts of data. Data understanding, processing, securing and storing are significant challenges in the IoT technology which restricts its development. This paper presents a new reference IoT model for future smart IoT solutions called Cloud Web of Things (CloudWoT). CloudWoT aims to overcome these limitations by combining IoT with edge computing, semantic web, and cloud computing. Additionally, this work is concerned with the security issues which threatens data in IoT application domains.