Visible to the public Biblio

Filters: Author is Curtmola, Reza  [Clear All Filters]
2019-11-25
Leontiadis, Iraklis, Curtmola, Reza.  2018.  Secure Storage with Replication and Transparent Deduplication. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :13–23.
We seek to answer the following question: To what extent can we deduplicate replicated storage? To answer this question, we design ReDup, a secure storage system that provides users with strong integrity, reliability, and transparency guarantees about data that is outsourced at cloud storage providers. Users store multiple replicas of their data at different storage servers, and the data at each storage server is deduplicated across users. Remote data integrity mechanisms are used to check the integrity of replicas. We consider a strong adversarial model, in which collusions are allowed between storage servers and also between storage servers and dishonest users of the system. A cloud storage provider (CSP) could store less replicas than agreed upon by contract, unbeknownst to honest users. ReDup defends against such adversaries by making replica generation to be time consuming so that a dishonest CSP cannot generate replicas on the fly when challenged by the users. In addition, ReDup employs transparent deduplication, which means that users get a proof attesting the deduplication level used for their files at each replica server, and thus are able to benefit from the storage savings provided by deduplication. The proof is obtained by aggregating individual proofs from replica servers, and has a constant size regardless of the number of replica servers. Our solution scales better than state of the art and is provably secure under standard assumptions.
2019-03-28
Afzali, Hammad, Torres-Arias, Santiago, Curtmola, Reza, Cappos, Justin.  2018.  Le-Git-Imate: Towards Verifiable Web-Based Git Repositories. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :469-482.
Web-based Git hosting services such as GitHub and GitLab are popular choices to manage and interact with Git repositories. However, they lack an important security feature - the ability to sign Git commits. Users instruct the server to perform repository operations on their behalf and have to trust that the server will execute their requests faithfully. Such trust may be unwarranted though because a malicious or a compromised server may execute the requested actions in an incorrect manner, leading to a different state of the repository than what the user intended. In this paper, we show a range of high-impact attacks that can be executed stealthily when developers use the web UI of a Git hosting service to perform common actions such as editing files or merging branches. We then propose le-git-imate, a defense against these attacks which provides security guarantees comparable and compatible with Git's standard commit signing mechanism. We implement le-git-imate as a Chrome browser extension. le-git-imate does not require changes on the server side and can thus be used immediately. It also preserves current workflows used in Github/GitLab and does not require the user to leave the browser, and it allows anyone to verify that the server's actions faithfully follow the user's requested actions. Moreover, experimental evaluation using the browser extension shows that le-git-imate has comparable performance with Git's standard commit signature mechanism. With our solution in place, users can take advantage of GitHub/GitLab's web-based features without sacrificing security, thus paving the way towards verifiable web-based Git repositories.