Visible to the public Biblio

Filters: Author is Peters, Travis  [Clear All Filters]
2019-11-27
Pierson, Timothy J., Peters, Travis, Peterson, Ronald, Kotz, David.  2018.  Proximity Detection with Single-Antenna IoT Devices. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :663–665.

Close physical proximity among wireless devices that have never shared a secret key is sometimes used as a basis of trust. In these cases, devices in close proximity are deemed trustworthy while more distant devices are viewed as potential adversaries. Because radio waves are invisible, however, a user may believe a wireless device is communicating with a nearby device when in fact the user's device is communicating with a distant adversary. Researchers have previously proposed methods for multi-antenna devices to ascertain physical proximity with other devices, but devices with a single antenna, such as those commonly used in the Internet of Things, cannot take advantage of these techniques. We investigate a method for a single-antenna Wi-Fi device to quickly determine proximity with another Wi-Fi device. Our approach leverages the repeating nature Wi-Fi's preamble and the characteristics of a transmitting antenna's near field to detect proximity with high probability. Our method never falsely declares proximity at ranges longer than 14 cm.

2019-04-01
Peters, Travis, Lal, Reshma, Varadarajan, Srikanth, Pappachan, Pradeep, Kotz, David.  2018.  BASTION-SGX: Bluetooth and Architectural Support for Trusted I/O on SGX. Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy. :3:1–3:9.
This paper presents work towards realizing architectural support for Bluetooth Trusted I/O on SGX-enabled platforms, with the goal of providing I/O data protection that does not rely on system software security. Indeed, we are primarily concerned with protecting I/O from all software adversaries, including privileged software. In this paper we describe the challenges in designing and implementing Trusted I/O at the architectural level for Bluetooth. We propose solutions to these challenges. In addition, we describe our proof-of-concept work that extends existing over-the-air Bluetooth security all the way to an SGX enclave by securing user data between the Bluetooth Controller and an SGX enclave.