Visible to the public Biblio

Filters: Author is Vastel, A.  [Clear All Filters]
2019-04-05
Vastel, A., Rudametkin, W., Rouvoy, R..  2018.  FP -TESTER : Automated Testing of Browser Fingerprint Resilience. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :103-107.
Despite recent regulations and growing user awareness, undesired browser tracking is increasing. In addition to cookies, browser fingerprinting is a stateless technique that exploits a device's configuration for tracking purposes. In particular, browser fingerprinting builds on attributes made available from Javascript and HTTP headers to create a unique and stable fingerprint. For example, browser plugins have been heavily exploited by state-of-the-art browser fingerprinters as a rich source of entropy. However, as browser vendors abandon plugins in favor of extensions, fingerprinters will adapt. We present FP-TESTER, an approach to automatically test the effectiveness of browser fingerprinting countermeasure extensions. We implement a testing toolkit to be used by developers to reduce browser fingerprintability. While countermeasures aim to hinder tracking by changing or blocking attributes, they may easily introduce subtle side-effects that make browsers more identifiable, rendering the extensions counterproductive. FP-TESTER reports on the side-effects introduced by the countermeasure, as well as how they impact tracking duration from a fingerprinter's point-of-view. To the best of our knowledge, FP-TESTER is the first tool to assist developers in fighting browser fingerprinting and reducing the exposure of end-users to such privacy leaks.
Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R..  2018.  FP-STALKER: Tracking Browser Fingerprint Evolutions. 2018 IEEE Symposium on Security and Privacy (SP). :728-741.
Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently-from every few hours to days-due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1, 905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.