Biblio
Intrusion Detection system (IDS) was an application which was aimed to monitor network activity or system and it could find if there was a dangerous operation. Implementation of IDS on Software Define Network architecture (SDN) has drawbacks. IDS on SDN architecture might decreasing network Quality of Service (QoS). So the network could not provide services to the existing network traffic. Throughput, delay and packet loss were important parameters of QoS measurement. Snort IDS and bro IDS were tools in the application of IDS on the network. Both had differences, one of which was found in the detection method. Snort IDS used a signature based detection method while bro IDS used an anomaly based detection method. The difference between them had effects in handling the network traffic through it. In this research, we compared both tools. This comparison are done with testing parameters such as throughput, delay, packet loss, CPU usage, and memory usage. From this test, it was found that bro outperform snort IDS for throughput, delay , and packet loss parameters. However, CPU usage and memory usage on bro requires higher resource than snort.
Intrusion Prevention System (IPS) is a tool for securing networks from any malicious packet that could be sent from specific host. IPS can be installed on SDN network that has centralized logic architecture, so that IPS doesnt need to be installed on lots of nodes instead it has to be installed alongside the controller as center of logic network. IPS still has a flaw and that is the block duration would remain the same no matter how often a specific host attacks. For this reason, writer would like to make a system that not only integrates IPS on the SDN, but also designs an adaptive IPS by utilizing a fuzzy logic that can decide how long blocks are based on the frequency variable and type of attacks. From the results of tests that have been done, SDN network that has been equipped with adaptive IPS has the ability to detect attacks and can block the attacker host with the duration based on the frequency and type of attacks. The final result obtained is to make the SDN network safer by adding 0.228 milliseconds as the execute time required for the fuzzy algorithm in one process.