Visible to the public Biblio

Filters: Author is Nathezhtha, T.  [Clear All Filters]
2020-03-09
Nathezhtha, T., Sangeetha, D., Vaidehi, V..  2019.  WC-PAD: Web Crawling based Phishing Attack Detection. 2019 International Carnahan Conference on Security Technology (ICCST). :1–6.
Phishing is a criminal offense which involves theft of user's sensitive data. The phishing websites target individuals, organizations, the cloud storage hosting sites and government websites. Currently, hardware based approaches for anti-phishing is widely used but due to the cost and operational factors software based approaches are preferred. The existing phishing detection approaches fails to provide solution to problem like zero-day phishing website attacks. To overcome these issues and precisely detect phishing occurrence a three phase attack detection named as Web Crawler based Phishing Attack Detector(WC-PAD) has been proposed. It takes the web traffics, web content and Uniform Resource Locator(URL) as input features, based on these features classification of phishing and non phishing websites are done. The experimental analysis of the proposed WC-PAD is done with datasets collected from real phishing cases. From the experimental results, it is found that the proposed WC-PAD gives 98.9% accuracy in both phishing and zero-day phishing attack detection.
2019-06-10
Nathezhtha, T., Yaidehi, V..  2018.  Cloud Insider Attack Detection Using Machine Learning. 2018 International Conference on Recent Trends in Advance Computing (ICRTAC). :60-65.

Security has always been a major issue in cloud. Data sources are the most valuable and vulnerable information which is aimed by attackers to steal. If data is lost, then the privacy and security of every cloud user are compromised. Even though a cloud network is secured externally, the threat of an internal attacker exists. Internal attackers compromise a vulnerable user node and get access to a system. They are connected to the cloud network internally and launch attacks pretending to be trusted users. Machine learning approaches are widely used for cloud security issues. The existing machine learning based security approaches classify a node as a misbehaving node based on short-term behavioral data. These systems do not differentiate whether a misbehaving node is a malicious node or a broken node. To address this problem, this paper proposes an Improvised Long Short-Term Memory (ILSTM) model which learns the behavior of a user and automatically trains itself and stores the behavioral data. The model can easily classify the user behavior as normal or abnormal. The proposed ILSTM not only identifies an anomaly node but also finds whether a misbehaving node is a broken node or a new user node or a compromised node using the calculated trust factor. The proposed model not only detects the attack accurately but also reduces the false alarm in the cloud network.