Visible to the public Biblio

Filters: Author is Jun Lu  [Clear All Filters]
2017-02-21
Wensheng Chen, Hui Li, Jun Lu, Chaoqi Yu, Fuxing Chen.  2015.  "Routing in the Centralized Identifier Network". 2015 10th International Conference on Communications and Networking in China (ChinaCom). :73-78.

We propose a clean-slate network architecture called Centralized Identifier Network (CIN) which jointly considers the ideas of both control plane/forwarding plane separation and identifier/locator separation. In such an architecture, a controller cluster is designed to perform routers' link states gathering and routing calculation/handing out. Meanwhile, a tailor-made router without routing calculation function is designed to forward packets and communicate with its controller. Furthermore, A router or a host owns a globally unique ID and a host should be registered to a router whose ID will be the host's location. Control plane/forwarding plane separation enables CIN easily re-splitting the network functions into finer optional building blocks for sufficient flexibility and adaptability. Identifier/locator separation helps CIN deal with serious scaling problems and offer support for host mobility. This article mainly shows the routing mechanism of CIN. Furthermore, numerical results are presented to demonstrate the performance of the proposed mechanism.

2015-05-05
Jian Wu, Yongmei Jiang, Gangyao Kuang, Jun Lu, Zhiyong Li.  2014.  Parameter estimation for SAR moving target detection using Fractional Fourier Transform. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. :596-599.

This paper proposes an algorithm for multi-channel SAR ground moving target detection and estimation using the Fractional Fourier Transform(FrFT). To detect the moving target with low speed, the clutter is first suppressed by Displace Phase Center Antenna(DPCA), then the signal-to-clutter can be enhanced. Have suppressed the clutter, the echo of moving target remains and can be regarded as a chirp signal whose parameters can be estimated by FrFT. FrFT, one of the most widely used tools to time-frequency analysis, is utilized to estimate the Doppler parameters, from which the moving parameters, including the velocity and the acceleration can be obtained. The effectiveness of the proposed method is validated by the simulation.