Visible to the public Biblio

Filters: Author is Wang, Han  [Clear All Filters]
2023-05-19
Pan, Aiqiang, Fang, Xiaotao, Yan, Zheng, Dong, Zhen, Xu, Xiaoyuan, Wang, Han.  2022.  Risk-Based Power System Resilience Assessment Considering the Impacts of Hurricanes. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1714—1718.
In this paper, a novel method is proposed to assess the power system resilience considering the impacts of hurricanes. Firstly, the transmission line outage model correlated to wind speed is developed. Then, Probability Load Flow (PLF) considering the random outage of lines and the variation of loads is designed, and Latin Hypercube Sampling (LHS) is used to improve the efficiency of Monte Carlo Simulation (MCS) in solving PLF. Moreover, risk indices, including line overloading, node voltage exceeding limit, load shedding and system collapse, are established to assess the resilience of power systems during hurricanes. The method is tested with a modified IEEE 14-bus system, and simulation results indicate the effectiveness of the proposed approach.
2022-06-13
Wang, Fengling, Wang, Han, Xue, Liang.  2021.  Research on Data Security in Big Data Cloud Computing Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1446–1450.
In the big data cloud computing environment, data security issues have become a focus of attention. This paper delivers an overview of conceptions, characteristics and advanced technologies for big data cloud computing. Security issues of data quality and privacy control are elaborated pertaining to data access, data isolation, data integrity, data destruction, data transmission and data sharing. Eventually, a virtualization architecture and related strategies are proposed to against threats and enhance the data security in big data cloud environment.
2019-06-28
Liu, Jed, Hallahan, William, Schlesinger, Cole, Sharif, Milad, Lee, Jeongkeun, Soulé, Robert, Wang, Han, Ca\c scaval, C\u alin, McKeown, Nick, Foster, Nate.  2018.  P4V: Practical Verification for Programmable Data Planes. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. :490-503.

We present the design and implementation of p4v, a practical tool for verifying data planes described using the P4 programming language. The design of p4v is based on classic verification techniques but adds several key innovations including a novel mechanism for incorporating assumptions about the control plane and domain-specific optimizations which are needed to scale to large programs. We present case studies showing that p4v verifies important properties and finds bugs in real-world programs. We conduct experiments to quantify the scalability of p4v on a wide range of additional examples. We show that with just a few hundred lines of control-plane annotations, p4v is able to verify critical safety properties for switch.p4, a program that implements the functionality of on a modern data center switch, in under three minutes.