Visible to the public Biblio

Filters: Author is Kent, Alexander D.  [Clear All Filters]
2019-07-01
Pope, Aaron Scott, Morning, Robert, Tauritz, Daniel R., Kent, Alexander D..  2018.  Automated Design of Network Security Metrics. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1680–1687.

Many abstract security measurements are based on characteristics of a graph that represents the network. These are typically simple and quick to compute but are often of little practical use in making real-world predictions. Practical network security is often measured using simulation or real-world exercises. These approaches better represent realistic outcomes but can be costly and time-consuming. This work aims to combine the strengths of these two approaches, developing efficient heuristics that accurately predict attack success. Hyper-heuristic machine learning techniques, trained on network attack simulation training data, are used to produce novel graph-based security metrics. These low-cost metrics serve as an approximation for simulation when measuring network security in real time. The approach is tested and verified using a simulation based on activity from an actual large enterprise network. The results demonstrate the potential of using hyper-heuristic techniques to rapidly evolve and react to emerging cybersecurity threats.