Visible to the public Biblio

Filters: Author is Hussain, R.  [Clear All Filters]
2021-02-22
Nour, B., Khelifi, H., Hussain, R., Moungla, H., Bouk, S. H..  2020.  A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2088–2093.
Named Data Networking (NDN) uses the content name to enable content sharing in a network using Interest and Data messages. In essence, NDN supports communication through multiple interfaces, therefore, it is imperative to think of the interface that better meets the communication requirements of the application. The current interface ranking is based on single static metric such as minimum number of hops, maximum satisfaction rate, or minimum network delay. However, this ranking may adversely affect the network performance. To fill the gap, in this paper, we propose a new multi-metric robust interface ranking scheme that combines multiple metrics with different objective functions. Furthermore, we also introduce different forwarding modes to handle the forwarding decision according to the available ranked interfaces. Extensive simulation experiments demonstrate that the proposed scheme selects the best and suitable forwarding interface to deliver content.
2019-08-05
Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.