Biblio
Filters: Author is Khatchadourian, Raffi [Clear All Filters]
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :469–481.
.
2022. Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the “best of both worlds,” the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges-and resultant bugs-involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation-the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.
ISSN: 2574-3864
Towards Safe Refactoring for Intelligent Parallelization of Java 8 Streams. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. :206-207.
.
2018. The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results towards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize parallel streams.