Visible to the public Biblio

Filters: Author is Fan, Xinxin  [Clear All Filters]
2021-06-01
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
2019-10-08
Fan, Xinxin, Chai, Qi.  2018.  Roll-DPoS: A Randomized Delegated Proof of Stake Scheme for Scalable Blockchain-Based Internet of Things Systems. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :482–484.

Delegated Proof-of-Stake (DPoS) is an efficient, decentralized, and flexible consensus framework available in the blockchain industry. However, applying DPoS to the decentralized Internet of Things (IoT) applications is quite challenging due to the nature of IoT systems such as large-scale deployments and huge amount of data. To address the unique challenge for IoT based blockchain applications, we present Roll-DPoS, a randomized delegated proof of stake algorithm. Roll-DPoS inherits all the advantages of the original DPoS consensus framework and further enhances its capability in terms of decentralization as well as extensibility to complex blockchain architectures. A number of modern cryptographic techniques have been utilized to optimize the consensus process with respect to the computational and communication overhead.