Biblio
Filters: Author is Shen, Ning [Clear All Filters]
A Practical and Secure Stateless Order Preserving Encryption for Outsourced Databases. 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC). :133—142.
.
2021. Order-preserving encryption (OPE) plays an important role in securing outsourced databases. OPE schemes can be either Stateless or Stateful. Stateful schemes can achieve the ideal security of order-preserving encryption, i.e., “reveal no information about the plaintexts besides order.” However, comparing to stateless schemes, stateful schemes require maintaining some state information locally besides encryption keys and the ciphertexts are mutable. On the other hand, stateless schemes only require remembering encryption keys and thus is more efficient. It is a common belief that stateless schemes cannot provide the same level of security as stateful ones because stateless schemes reveal the relative distance among their corresponding plaintext. In real world applications, such security defects may lead to the leakage of statistical and sensitive information, e.g., the data distribution, or even negates the whole encryption. In this paper, we propose a practical and secure stateless order-preserving encryption scheme. With prior knowledge of the data to be encrypted, our scheme can achieve IND-CCPA (INDistinguishability under Committed ordered Chosen Plaintext Attacks) security for static data set. Though the IND-CCPA security can't be met for dynamic data set, our new scheme can still significantly improve the security in real world applications. Along with the encryption scheme, in this paper we also provide methods to eliminate access pattern leakage in communications and thus prevents some common attacks to OPE schemes in practice.
Automated Coverage-Based Testing of XACML Policies. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :3–14.
.
2018. While the standard language XACML is very expressive for specifying fine-grained access control policies, defects can get into XACML policies for various reasons, such as misunderstanding of access control requirements, omissions, and coding errors. These defects may result in unauthorized accesses, escalation of privileges, and denial of service. Therefore, quality assurance of XACML policies for real-world information systems has become an important issue. To address this issue, this paper presents a family of coverage criteria for XACML policies, such as rule coverage, rule pair coverage, decision coverage, and Modified Condition/Decision Coverage (MC/DC). To demonstrate the assurance levels of these coverage criteria, we have developed methods for automatically generating tests, i.e., access requests, to satisfy the coverage criteria using a constraint solver. We have evaluated these methods through mutation analysis of various policies with different levels of complexity. The experiment results have shown that the rule coverage is far from adequate for revealing the majority of defects in XACML policies, and that both MC/DC and decision coverage tests have outperformed the existing methods for testing XACML policies. In particular, MC/DC tests achieve a very high level of quality assurance of XACML policies.