Visible to the public Biblio

Filters: Author is Zhang, Yanmiao  [Clear All Filters]
2022-08-12
Zhang, Yanmiao, Ji, Xiaoyu, Cheng, Yushi, Xu, Wenyuan.  2019.  Vulnerability Detection for Smart Grid Devices via Static Analysis. 2019 Chinese Control Conference (CCC). :8915–8919.
As a modern power transmission network, smart grid connects abundant terminal devices and plays an important role in our daily life. However, along with its growth are the security threats. Different from the separated environment previously, an adversary nowadays can destroy the power system by attacking its terminal devices. As a result, it's critical to ensure the security and safety of terminal devices. To achieve it, detecting the pre-existing vulnerabilities in the terminal program and enhancing its security, are of great importance and necessity. In this paper, we introduce Cker, a novel vulnerability detection tool for smart grid devices, which generates an program model based on device sources and sets rules to perform model checking. We utilize the static analysis to extract necessary information and build corresponding program models. By further checking the model with pre-defined vulnerability patterns, we achieve security detection and error reporting. The evaluation results demonstrate that our method can effectively detect vulnerabilities in smart devices with an acceptable accuracy and false positive rate. In addition, as Cker is realized by pure python, it can be easily scaled to other platforms.
2019-11-19
Ying, Huan, Zhang, Yanmiao, Han, Lifang, Cheng, Yushi, Li, Jiyuan, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Detecting Buffer-Overflow Vulnerabilities in Smart Grid Devices via Automatic Static Analysis. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :813-817.

As a modern power transmission network, smart grid connects plenty of terminal devices. However, along with the growth of devices are the security threats. Different from the previous separated environment, an adversary nowadays can destroy the power system by attacking these devices. Therefore, it's critical to ensure the security and safety of terminal devices. To achieve this goal, detecting the pre-existing vulnerabilities of the device program and enhance the terminal security, are of great importance and necessity. In this paper, we propose a novel approach that detects existing buffer-overflow vulnerabilities of terminal devices via automatic static analysis (ASA). We utilize the static analysis to extract the device program information and build corresponding program models. By further matching the generated program model with pre-defined vulnerability patterns, we achieve vulnerability detection and error reporting. The evaluation results demonstrate that our method can effectively detect buffer-overflow vulnerabilities of smart terminals with a high accuracy and a low false positive rate.