Visible to the public Biblio

Filters: Author is Yang, Dongsheng  [Clear All Filters]
2022-03-23
Liu, Jingyu, Yang, Dongsheng, Lian, Mengjia, Li, Mingshi.  2021.  Research on Classification of Intrusion Detection in Internet of Things Network Layer Based on Machine Learning. 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR). :106–110.
The emergence of the Internet of Things (IoT) is not only a global revolution in the information industry, but also brought tremendous changes to our lives. With the development of the technology and means of the IoT, information security issues have gradually emerged, and intrusion attacks have become one of the main problems of the IoT network security. The network layer of the IoT is the key connecting the platform and sensors or controllers of the IoT, and it is also the most standardized, the strongest and the most mature part of the whole physical network architecture. Its large-scale development has led to the network layer's security issues will receive more attention and face more challenges. This paper proposes an intrusion detection algorithm deployed on the network layer of the IoT, which uses the BPSO algorithm to extract features from the NSL-KDD dataset, and applies support vector machines (SVM) as the core model of the algorithm to detect and identify abnormal data, especially DoS attacks. Experimental results show that the model's detection rate of abnormal data and DoS attacks are significantly improved.
2019-11-19
Sun, Yunhe, Yang, Dongsheng, Meng, Lei, Gao, Xiaoting, Hu, Bo.  2018.  Universal Framework for Vulnerability Assessment of Power Grid Based on Complex Networks. 2018 Chinese Control And Decision Conference (CCDC). :136-141.

Traditionally, power grid vulnerability assessment methods are separated to the study of nodes vulnerability and edges vulnerability, resulting in the evaluation results are not accurate. A framework for vulnerability assessment is still required for power grid. Thus, this paper proposes a universal method for vulnerability assessment of power grid by establishing a complex network model with uniform weight of nodes and edges. The concept of virtual edge is introduced into the distinct weighted complex network model of power system, and the selection function of edge weight and virtual edge weight are constructed based on electrical and physical parameters. In addition, in order to reflect the electrical characteristics of power grids more accurately, a weighted betweenness evaluation index with transmission efficiency is defined. Finally, the method has been demonstrated on the IEEE 39 buses system, and the results prove the effectiveness of the proposed method.