Biblio
The Internet of Things is stepping out of its infancy into full maturity, requiring massive data processing and storage. Unfortunately, because of the unique characteristics of resource constraints, short-range communication, and self-organization in IoT, it always resorts to the cloud or fog nodes for outsourced computation and storage, which has brought about a series of novel challenging security and privacy threats. For this reason, one of the critical challenges of having numerous IoT devices is the capacity to manage them and their data. A specific concern is from which devices or Edge clouds to accept join requests or interaction requests. This paper discusses a design concept for developing the IoT data management platform, along with a data management and lineage traceability implementation of the platform based on blockchain and smart contracts, which approaches the two major challenges: how to implement effective data management and enrich rational interoperability for trusted groups of linked Things; And how to settle conflicts between untrusted IoT devices and its requests taking into account security and privacy preserving. Experimental results show that the system scales well with the loss of computing and communication performance maintaining within the acceptable range, works well to effectively defend against unauthorized access and empower data provenance and transparency, which verifies the feasibility and efficiency of the design concept to provide privacy, fine-grained, and integrity data management over the IoT devices by introducing the blockchain-based data management platform.